Published in

Royal Society of Chemistry, Soft Matter, 44(10), p. 8875-8887

DOI: 10.1039/c4sm01402b

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Self-assembly and Photophysical Properties of Oligo(2,5-dihexyloxy-1,4-phenylene vinylene)-block-Poly(ethylene glycol)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We describe the synthesis and characterization of a family of diblock copolymers with 5 units of a dihexyloxy-phenylenevinylene block (OHPV) connected to a series of poly(ethylene glycol) (PEG) chains of different average lengths (12, 45 and 115 PEG units: OHPV5-PEG12, OHPV5-PEG45, OHPV5-PEG115). All three polymers underwent self-assembly in ethanol, a good solvent for the PEG units, but poor for the OHPV segment. The nature of the structures formed depends sensitively on the length of the PEG block. OHPV5-PEG115 formed long fiber-like micelles of uniform width, whereas OHPV5-PEG45 formed fragile broad ribbons. We also obtained thin ribbons with OHPV5-PEG12 but they tend to fold and twist upon themselves. The structures obtained were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), as well as by wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). In addition, their photophysical properties were examined by UV-vis, steady state fluorescence and fluorescence decay measurements. The results of these experiments indicate that the OHPV groups pack differently in the fiber-like micelles of OHPV5-PEG115 than in the lamellar structures formed by OHPV5-PEG45.