Published in

Royal Society of Chemistry, Dalton Transactions, 10, p. 1563-1566, 2004

DOI: 10.1039/b402602k

Links

Tools

Export citation

Search in Google Scholar

Mononucleotide recognition by cyclic trinuclear palladium(II) complexes containing 4,7-phenanthroline N,N bridges

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reaction of [(dach)Pd(NO3)2] entities (dach = (R,R)-1,2-diaminocyclohexane, (S,S)-1,2-diaminocyclohexane) and 4,7-phenanthroline (phen) providing, respectively, 90 and 120 degrees bond angles, leads to the formation of two novel positively charged homochiral cyclic trinuclear metallacalix[3]arene species [((R,R)-1,2-diaminocyclohexane)Pd(phen)]3(NO3)6 (2a) and [((S,S)-1,2-diaminocyclohexane)Pd(phen)]3(NO3)6 (2b). These species have been characterised by 1)H NMR and X-ray diffraction methods (2b), showing that they possess accessible cavities suited for supramolecular recognition processes. We prove, indeed, from 1H NMR studies the inclusion of mononucleotides inside the cavity of the trinuclear species [(ethylenediamino)Pd(phen)]3(6+) (1), [((R,R)-1,2-diaminocyclohexane)Pd(phen)]3(6+) (2a) and [((S,S)-1,2-diaminocyclohexane)Pd(phen)]3(6+) (2b) in aqueous solution. Association constants (K(ass)) range from 85 +/- 6 M(-1) for the interaction between [(ethylenediamine)Pd(phen)]3(6+) and adenosine monophosphate to 37 +/- 4 M(-1) for the interaction between [(1,2-diaminocyclohexane)Pd(phen)]3(6+) and thymidine monophosphate. We invoke the synergy of electrostatic, anion-pi and pi-pi interactions to explain the recognition of mononucleotides inside the cavity of the metallacalix[3]arenes.