Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Journal of Analytical Atomic Spectrometry, 1(25), p. 84-87, 2010

DOI: 10.1039/b912112a

Links

Tools

Export citation

Search in Google Scholar

High-precision analysis of Sr/Ca and Mg/Ca ratios in corals by laser ablationinductively coupled plasma optical emission spectrometry

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method has been developed to determine high-precision Sr/Ca and Mg/Ca ratios in corals by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) using aqueous solution standard calibration. Simultaneous determination of the signals of the entire analytical wavelengths by ICP-OES and the high performance of the new type of LA system (Resonetics 193 nm ArF excimer laser-ablation system, RESOlution M-50) improve the precision for elemental ratios. Repeated measurements on a coral base synthesized working standard, BH-7, provide precisions of about 0.4% and 0.8% for the Sr/Ca and Mg/Ca ratios, respectively, which are better than the formerly reported precision by the LA-ICP-MS method, about 1%. Such precision is comparable to those obtained by the solution nebulization-ICP-OES (SN-ICP-OES) method, and is adequate for paleoclimate reconstruction. In addition, the LA-ICP-OES can provide results with much higher spatial/time resolution. Comparisons between the LA and SN methods were handled by measuring along the same track of a coral. The Sr/Ca results by these two methods agree quite well with each other. The LA-ICP-OES method is very promising for the analysis of element/Ca ratios in coral and other carbonates used in paleoclimate studies such as stalagmite. Systematic discrepancy, however, was observed in the Mg/Ca ratios, likely due to the existing state of magnesium in the coral skeleton.