Royal Society of Chemistry, Journal of Environmental Monitoring, 5(14), p. 1375, 2012
DOI: 10.1039/c2em30037k
Full text: Download
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are anthropogenic substances classified as persistent bioaccumulative compounds and are found in various environmental compartments throughout the world, from industrialized regions to remote zones far from areas of production. In this study, we assessed the effects of PFOA and PFOS on early life stages of marine test species belonging to three different trophic levels: one microalga (Isochrysis galbana), a primary consumer (Paracentrotus lividus) and two secondary consumers (Siriella armata and Psetta maxima). Acute EC(50) values for PFOS were 0.11 mg L(-1) in P. maxima, 6.9 mg L(-1) in S. armata, 20 mg L(-1) in P. lividus and 37.5 mg L(-1) in I. galbana. In the case of PFOA, the toxicity was lower but the ranking was the same; 11.9 mg L(-1) in P. maxima, 15.5 mg L(-1) in S. armata, 110 mg L(-1) in P. lividus and 163.6 mg L(-1) in I. galbana. The Predicted No Effect Concentration (PNEC) for PFOS and PFOA in marine water derived from these acute toxicity values are 1.1 μg L(-1) for PFOS and 119 μg L(-1) for PFOA. This study established a baseline dataset of toxicity of PFOS and PFOA on saltwater organisms. The data obtained suggest that PFOA pose a minor risk to these organisms through direct exposure. In the perspective of risk assessment, early life stage (ELS) endpoints provide rapid, cost-effective and ecologically relevant information, and links should be sought between these short-term tests and effects of long-term exposures in more realistic scenarios.