Published in

American Chemical Society, Journal of Medicinal Chemistry, 7(57), p. 3126-3139, 2014

DOI: 10.1021/jm500131s

Links

Tools

Export citation

Search in Google Scholar

Multitarget Drug Discovery for Tuberculosis and Other Infectious Diseases

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the discovery of a series of new drug leads that have potent activity against Mycobacterium tuberculosis as well as against other bacteria, fungi, and a malaria parasite. The compounds are analogs of the new tuberculosis (TB) drug SQ109 (1) which has been reported to act by inhibiting a transporter called MmpL3, involved in cell wall biosynthesis. We show that 1 and the new compounds also target enzymes involved in menaquinone biosynthesis and electron transport, inhibiting respiration and ATP biosynthesis, and are uncouplers, collapsing the pH gradient and membrane potential used to power transporters. The result of such multi-target inhibition is potent inhibition of TB cell growth, as well as very low rates of spontaneous drug resistance. Several targets are absent in humans but are present in other bacteria, as well as in malaria parasites, whose growth is also inhibited.