Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 19(103), p. 7444-7449, 2006

DOI: 10.1073/pnas.0602402103

Links

Tools

Export citation

Search in Google Scholar

Loss of p53 impedes the antileukemic response to BCR-ABL inhibition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Targeted cancer therapies exploit the continued dependence of cancer cells on oncogenic mutations. Such agents can have remarkable activity against some cancers, although antitumor responses are often heterogeneous, and resistance remains a clinical problem. To gain insight into factors that influence the action of a prototypical targeted drug, we studied the action of imatinib (STI-571, Gleevec) against murine cells and leukemias expressing BCR-ABL, an imatinib target and the initiating oncogene for human chronic myelogenous leukemia (CML). We show that the tumor suppressor p53 is selectively activated by imatinib in BCR-ABL-expressing cells as a result of BCR-ABL kinase inhibition. Inactivation of p53, which can accompany disease progression in human CML, impedes the response to imatinib in vitro and in vivo without preventing BCR-ABL kinase inhibition. Concordantly, p53 mutations are associated with progression to imatinib resistance in some human CMLs. Our results identify p53 as a determinant of the response to oncogene inhibition and suggest one way in which resistance to targeted therapy can emerge during the course of tumor evolution.