Published in

Royal Society of Chemistry, Nanoscale, 6(7), p. 2497-2503, 2015

DOI: 10.1039/c4nr06411a

Links

Tools

Export citation

Search in Google Scholar

Growth of wafer-scale MoS 2 monolayer by magnetron sputtering

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The two-dimensional layer of molybdenum disulfide (MoS2) exhibits promising prospects in the applications of optoelectronics and valleytronics. Herein, we report a successful new process for synthesizing wafer-scale MoS2 atomic layers on diverse substrates via magnetron sputtering. Spectroscopic and microscopic results reveal that these synthesized MoS2 layers are highly homogeneous and crystallized; moreover, uniform monolayers at wafer scale can be achieved. Raman and photoluminescence spectroscopy indicate comparable optical qualities of these as-grown MoS2 with other methods. The transistors composed of the MoS2 film exhibit p-type performance with an on/off current ratio of ∼10(3) and hole mobility of up to ∼12.2 cm(2) V(-1) s(-1). The strategy reported herein paves new ways towards the large scale growth of various two-dimensional semiconductors with the feasibility of controllable doping to realize desired p- or n-type devices.