Published in

Royal Society of Chemistry, Nanoscale, 7(6), p. 3704

DOI: 10.1039/c3nr06157d

Links

Tools

Export citation

Search in Google Scholar

Titania nanobundle networks as dye-sensitized solar cell photoanodes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quasi-one-dimensional (1D) titania nanobundles were synthesized via a hydrothermal method and used to print random network nanostructured films. These films are shown to be ideally suited for application as photoanodes in dye-sensitized solar cells (DSCs) as they have a higher porosity compared to the traditional 1D nanostructured TiO2 materials. Devices constructed using the N719 dye and iodide/triiodide as the redox mediator in the electrolyte yielded energy conversion efficiencies (η = 6.1 ± 0.2%), which were marginally lower than for devices made with the commonly used P25 titania films (η = 6.3 ± 0.1%) under one sun simulated solar radiation. Application of an electrolyte based on the [Co(bpy)3](2+/3+) redox couple and the MK2 organic sensitizer resulted in higher efficiencies (η = 7.70 ± 0.1%) than for the P25 devices (η = 6.3 ± 0.3%). Each performance parameter (short circuit current density, open circuit voltage and fill factor) was higher for the TiO2 nanobundle devices than those for the P25-based devices. The results of electrochemical impedance spectroscopy (EIS), intensity-modulated photovoltage spectroscopy (IMVS), and dye-loading measurements indicated that the better performance of TiO2 nanobundle devices with cobalt electrolytes correlates with higher porosity, relatively fast electron transport and more efficient suppression of electron recombination. A faster rate of diffusion of the cobalt complexes through the highly porous TiO2 nanobundle network is proposed to contribute to the enhanced device efficiency.