Published in

Royal Society of Chemistry, Molecular BioSystems, 12(9), p. 3068

DOI: 10.1039/c3mb70329k

Links

Tools

Export citation

Search in Google Scholar

Solvent interaction analysis of intrinsically disordered proteins in aqueous two-phase systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In an aqueous two-phase system (ATPS), the partitioning of a protein is defined by the differential interactions of the protein with aqueous media in the two phases. Our study shows that partitioning of proteins in a set of ATPSs of different ionic compositions can be used to quantify structural differences between α-synuclein, its variants and several globular proteins. Since application of ATPSs implies the use of high concentrations of two polymers in water when a certain threshold concentration of the polymers is exceeded, and since these levels of polymer concentrations are similar to those commonly used to mimic the effects of macromolecular crowding on proteins, we used circular dichroism spectroscopy to evaluate the structural consequences of placing proteins in solutions with high polymer concentrations and various ionic compositions.