Published in

Royal Society of Chemistry, MedChemComm, 12(2), p. 1181

DOI: 10.1039/c1md00162k

Links

Tools

Export citation

Search in Google Scholar

Key interactions of the mutant HIV-1 reverse transcriptase/efavirenz: An evidence obtained from ONIOM method

Journal article published in 2011 by Pornthip Boonsri, Mayuso Kuno, Supa Hannongbua ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two-layered ONIOM calculations were performed in order to compare the binding of efavirenz (EFV) to the HIV-1 RT binding pocket of both wild type (WT) and K103N enzymes. The K103N mutation reduces the binding affinity of the inhibitor by 5.81 kcal mol−1 as obtained from the ONIOM2 (B3LYP/6-31G(d,p):PM3) method. These indicate that the loss of binding energy to K103N mutation can attribute to a weakened attractive interaction between the drug and residues surrounding in the binding pocket. The deformation of the K103N binding pocket requires more energy for structural rearrangement than that of the WT by approximately 4.0 kcal mol¬1. Moreover, the pairwise energies perfectly demonstrate that the K103N mutation affects on the loss of the interaction energy. In addition, the main influences are due to residues surrounding in the binding pocket; K101, K102, S105, V179, W229, P236 and E138. In particular, two residues; K101 and S105, established hydrogen bondings with the inhibitor. ONIOM calculations, resulting in the details of binding energy, interaction energy and deformation energy can be used to identify the key interaction and structural requirements of more potent HIV-1 RT inhibitor.