Published in

Royal Society of Chemistry, Chemical Society Reviews, 18(41), p. 6023

DOI: 10.1039/c2cs35172b

Links

Tools

Export citation

Search in Google Scholar

Design and Properties of Functional Nanotubes from the Self-Assembly of Cyclic Peptide Templates

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

β-Sheet forming self assembling cyclic peptides offer a versatile scaffold for the construction and control of hydrogen-bonded nanotube assemblies. These structures have major advantages over other nanoscale tubular structures, including sub-nanometer control over the internal diameter, and the ability to control internal and external chemical functionality. This Tutorial Review presents an overview of nanotubes derived from this class of cyclic peptides. The design rationale for functional nanotubes based on cyclic peptide ring size and chemical functionality is discussed. Additionally, we highlight the recent expansion of the nanotube toolbox through conjugation of (macro)molecules to the cyclic peptides. These provide additional functionality and control nanotube dimensions that could potentially prove beneficial in future applications.