Published in

Royal Society of Chemistry, Organic and Biomolecular Chemistry, 22(5), p. 3682

DOI: 10.1039/b712608e

Links

Tools

Export citation

Search in Google Scholar

The mechanism of the Baeyer-Villiger rearrangement: Quantum chemistry and TST study supported by experimental kinetic data

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mechanism of the Baeyer-Villiger rearrangement is modelled for the reaction of propanone with trifluoroperacetic acid, catalyzed by trifluoroacetic acid in dichloromethane, using three DFT methods (B3LYP, BH&HLYP and MPWB1K) and MP2. These results are refined and used to calculate the overall reaction rate coefficient using conventional Transition State Theory. The excellent agreement between the calculated (1.00 x 10(-3) L mol(-1) s(-1)) and the experimental (1.8 x 10(-3) L mol(-1) s(-1)) rate coefficients at the MPWB1K level strongly supports the mechanism recently proposed by our group. This DFT method is then used to study the mechanism of a larger system: cyclohexanone + trifluoroperacetic acid, for which a very good agreement between the calculated and the experimental rate coefficients is also found (1.37 and 0.32 L mol(-1) s(-1), respectively). The modelled mechanism is not ionic but neutral, and consists of two concerted steps. The first one is strongly catalyzed while the second one, the migration step, seems not to be catalyzed for the systems under study. The results of this work could be of interest for understanding other reactions in non-polar solvents for which ionic mechanisms have been assumed.