Published in

Royal Society of Chemistry, Dalton Transactions, 28(41), p. 8575

DOI: 10.1039/c2dt30350g

Links

Tools

Export citation

Search in Google Scholar

Evolution of the crystal and magnetic structure of the R2MnRuO7 (R = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) family of pyrochlore oxides

Journal article published in 2012 by R. Martínez Coronado, M. Retuerto, M. T. Fernández, J. A. Alonso ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The members of the family of pyrochlore oxides with the formula R(2)MnRuO(7) (R = Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) have been synthesized and characterized. Polycrystalline samples were prepared by a soft chemistry procedure involving citrates of the different metal ions, followed by thermal treatments in air or O(2) pressure. The crystallographic and magnetic structures have been analysed from X-ray diffraction (XRD) and neutron powder diffraction (NPD) data, in complement with magnetic measurements; the evolution along the series of the crystallographic parameters (unit-cell parameters, bond distances and angles) is discussed. In R(2)MnRuO(7) pyrochlores, Mn and Ru ions statistically occupy the 16c sites in a cubic unit cell with space group Fd ̅3m, which defines an intrinsic frustrated three-dimensional system. In all the cases, the low-temperature NPD data unveils an antiferromagnetic coupling of two subsets of Mn(4+)/Ru(4+) spins, indicating that the magnetic frustration is partially relieved by the random distribution of Mn and Ru over the 16c sites. At lower temperatures there is a polarization of the R(3+) magnetic moments, which also participate in the magnetic structure, when a magnetic rare earth is present.