Published in

Royal Society of Chemistry, Dalton Transactions, 16(41), p. 4985

DOI: 10.1039/c2dt12155g

Links

Tools

Export citation

Search in Google Scholar

Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The catecholase activity of two dinuclear Cu(II) complexes with distant metal centers is discussed together with solid state and solution studies. The crystal structure for one of them, [Cu(2)(diep)(H(2)O)(4)](ClO(4))(4)·2H(2)O, is described, showing the two copper ions are 7.457 Å apart and in a square pyramidal coordination. Both complexes display a weak antiferromagnetic coupling in the solid state that is manifest in the dimer EPR spectra obtained in frozen solution. The pH-potentiometric speciation performed in 1:1 MeOH-H(2)O allowed the assignment of hydrolyzed copper species as those catalytically active in the oxidation of 3,5-di-tert-butylcatechol (DTBC). The kinetic measurements led us to propose behavior consistent with Michaelis-Menten plus a linear dependence of the initial rate on [DTBC]. This can be associated with the presence of more than one catalytically active species, which is consistent with the evidence of several differently hydrolyzed species shown in the predominance diagrams. Product characterization studies led to establishing the formation of hydrogen peroxide during the catalytic cycle, while semiquinone and superoxide radicals were detected by EPR spectroscopy, supporting one-electron transference at each of the copper centers.