Published in

Royal Society of Chemistry, Faraday Discussions, (174), p. 313-339, 2014

DOI: 10.1039/c4fd00142g

Links

Tools

Export citation

Search in Google Scholar

Design of donor-acceptor star-shaped oligomers for efficient solution-processible organic photovoltaics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This contribution describes recent progress in the design, synthesis and properties of solution-processible star-shaped oligomers and their application in organic photovoltaics. Even though alternative chemistry has been used to design such oligomers, the most successful approach is based on a triphenylamine donor branching center, (oligo)thiophene conjugated spacers and dicyanovinyl acceptor groups. These are mainly amorphous low band-gap organic semiconductors, though crystalline or liquid crystalline ordering can sometimes be realized. It was shown that the solubility, thermal behavior and structure of such molecules in the bulk strongly depend on the presence and position of alkyl groups, as well as on their length. The photovoltaic properties of solution-processed molecules of this type are now approaching 5% which exceeds those of vacuum-sublimed devices. The design rules and future perspectives of this class of organic photovoltaic molecules are discussed.