Published in

Royal Society of Chemistry, Dalton Transactions, 26(44), p. 11943-11953, 2015

DOI: 10.1039/c5dt01388g

Links

Tools

Export citation

Search in Google Scholar

Magnetic Studies of Mesoporous Nanostructured Iron Oxide Materials Synthesized by One-Step Soft-Templating

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A combined magnetization and 57Fe spin-echo nuclear magnetic resonance (NMR) study has been carried out on mesoporous nanostructured materials consisting of the magnetite (Fe3O4) and maghemite (γ-Fe2O3) phases. Two series of samples were synthesized using a recently developed one-step soft-templating approach with systematic variations in calcination temperature and reaction atmosphere. Nuclear magnetic resonance has been shown to be a valuable tool for distinguishing between the two magnetic iron oxide spinel phases, Fe3O4 and γ-Fe2O3, on the nanoscale as well as monitoring phase transformation resulting from oxidation. For the Fe3O4 and γ-Fe2O3 phases, peaks in the NMR spectra are attributed to Fe in the tetrahedral (A) sites and octahedral (B) sites. The magnetic field dependence of the peaks was observed and confirmed the site assignments. Fe3O4 on a nanoscale readily oxidizes to form γ-Fe2O3 and this was clearly evident in the NMR spectra. As evidenced by transmission electron microscope (TEM) images, the porous mesostructure for the iron oxide materials is formed by a random close-packed aggregation of nanoparticles; correspondingly, superparamagnetic behavior was observed in the magnetic measurements. Although X-ray diffraction (XRD) shows the spinel structure for the Fe3O4 and γ-Fe2O3 phases, unlike NMR, it is difficult to distinguish between the two phases with XRD. Nitrogen sorption isotherms characterize the mesoporous structures of the materials, and yield BET surface area values and limited BJH pore size distribution curves.