Published in

Royal Society of Chemistry, Nanoscale, 10(6), p. 5138

DOI: 10.1039/c3nr06425e

Links

Tools

Export citation

Search in Google Scholar

Plasmonic bipyramids for fluorescence enhancement and protection against photobleaching

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A great number of studies focus their interest on the photophysical properties of fluorescent hybrid gold nanoparticles for potential applications in biotechnologies such as imaging and/or treatment. Spherical gold nanoparticles are known to quench a chromophore fluorescent signal, when moieties are located in their close vicinity. The use of a polymer spacer on such a system allowed only partial recovery of the dye emission by controlling the surface to dye distance. Gold-based anisotropic sharp nanostructures appear to exhibit more interesting features due to the strong electric field generated at their edges and tips. In this paper, a complete study of hybrid fluorescent bipyramidal-like gold nanostructures is presented. We describe the chemical synthesis of gold bipyramids functionalized with fluorescent water-soluble polymers and their photophysics both in solution and on a single object. We show that the use of a bipyramidal shape instead of a spherical one leads to total recovery of the fluorescence and even to an enhancement of the emission of the dyes by a factor of 1.4.