Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 16(13), p. 7298, 2011

DOI: 10.1039/c0cp02055a

Links

Tools

Export citation

Search in Google Scholar

Magnetic field induced aggregation of nanoparticles for sensitive molecular detection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A molecular detection method utilizing the magnetically induced aggregation of silver nanoparticle (NP)-embedded silica NPs for SERS activation is described. Here, silver embedded magnetic NPs (Ag-M-dots) composed of a magnetic core and silica shells, on whose surface silver NPs were formed, were used. Because the magnetic field induced aggregated Ag-M-dots exhibit a strong SERS signal compared to the dispersed Ag-M-dots, the system allows for the detection of adsorbed Raman label compound even at the 100 fM level. Adenine was tested as a model biocompound and its Raman spectrum could be observed at concentrations as low as 1 pM. The experimental results were supported by the theoretical calculations.