Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 23(10), p. 3440

DOI: 10.1039/b803709b

Links

Tools

Export citation

Search in Google Scholar

Intracule densities in the strong-interaction limit of density functional theory

Journal article published in 2008 by Paola Gori-Giorgi ORCID, Michael Seidl, Andreas Savin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The correlation energy in density functional theory can be expressed exactly in terms of the change in the probability of finding two electrons at a given distance r(12) (intracule density) when the electron-electron interaction is multiplied by a real parameter lambda varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is (ideally) kept fixed by a suitable local one-body potential. While an accurate intracule density of the physical system can only be obtained from expensive wavefunction-based calculations, being able to construct good models starting from Kohn-Sham ingredients would highly improve the accuracy of density functional calculations. To this purpose, we investigate the intracule density in the lambda --> infinity limit of the adiabatic connection. This strong-interaction limit of density functional theory turns out to be, like the opposite non-interacting Kohn-Sham limit, mathematically simple and can be entirely constructed from the knowledge of the one-electron density. We develop here the theoretical framework and, using accurate correlated one-electron densities, we calculate the intracule densities in the strong interaction limit for few atoms. Comparison of our results with the corresponding Kohn-Sham and physical quantities provides useful hints for building approximate intracule densities along the adiabatic connection of density functional theory.