Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 3(1), p. 463-469, 2013

DOI: 10.1039/c2tc00082b

Links

Tools

Export citation

Search in Google Scholar

Tetraphenylsilane derivatives spiro-annulated by triphenylamine/carbazole with enhanced HOMO energy levels and glass transition temperatures without lowering triplet energy: Host materials for efficient blue phosphorescent OLEDs

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two new host materials, SiBSTPA and SiBSCz, were designed and synthesized based on 4,4′-bis(triphenylsilyl)-biphenyl (BSB). Their thermal, electrochemical, electronic absorption and photoluminescent properties were fully investigated. The introduction of spiro-annulated triphenylamine/carbazole moieties on 4,4′-bis(triphenylsilyl)-biphenyl (BSB) increases the HOMO energy levels from −6.49 eV (BSB) to −5.30 eV for SiBSTPA and −5.56 eV for SiBSCz, and accordingly facilitates hole injection from the nearby hole-transporting layer. Compared to 4,4′-bis(triphenylsilyl)-biphenyl (BSB), higher glass transition temperatures (Tg) were observed at 133 °C for SiBSTPA and 129 °C for SiBSCz, owing to the rigid spiro-annulated structures. Meanwhile, the perpendicular conformation between the triphenylamine or carbazole plane and the biphenyl plane effectively prevents the extension of the π-conjugation and consequently causes no depreciation of their triplet energies (ca. 2.75 eV). Phosphorescent organic light-emitting devices (PhOLEDs) with the following configuration: ITO/NPB/TCTA/EML/TAZ/LiF/Al were fabricated by using the two host materials and the blue emitter bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) picolate (FIrpic) as the guest. These devices exhibited good performance with the maximum current efficiency of 21.4 cd A−1 and the maximum power efficiency of 15.6 lm W−1.