Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 7(13), p. 2834-2841

DOI: 10.1039/c0cp01683g

Links

Tools

Export citation

Search in Google Scholar

Molecular organization and effective energy transfer in iridium metallosurfactant-porphyrin assemblies embedded in Langmuir-Schaefer films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mixed Langmuir monolayers and Langmuir-Schaefer (LS) films containing the cationic metallosurfactant bis(2-phenylpyridine)(4,4'-diheptadecyl-2,2'-bipyridine)-iridium(III) chloride (Ir-complex) and the anionic tetrakis(4-sulfonatophenyl)porphyrin (TSPP) in 4:1 molar ratio have been successfully prepared by the co-spreading method at the air-water interface. The presence of both luminescent species at the interface, as well as the organization of the TSPP underneath the Ir-complex matrix in Langmuir and LS films, is inferred by surface techniques such as π-A isotherms, reflection spectroscopy, Brewster angle microscopy (BAM) and UV-visible absorption spectroscopy. A red-shift in the absorption band of the porphyrin under the compression of the mixed monolayer suggests the J-aggregation of the TSPP under the Ir-complex matrix. To date, this is the first report of Langmuir and/or LS films containing these two types of species together. Furthermore, the intermolecular energy transfer between Ir-complex and TSPP molecules in solution and in transferred mixed films is investigated through steady-state fluorescence and lifetime measurements. These results indicate that effective intermolecular energy transfer occurs from the Ir-complex to the TSPP molecules in LS films. The influence of the spatial proximity of donor and acceptor molecules has been studied by the insertion of lipid interlayers among them.