Published in

Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 37(3), p. 18753-18808

DOI: 10.1039/c5ta02240a

Links

Tools

Export citation

Search in Google Scholar

Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials have increased exponentially. Particularly the easy preparation of graphene like materials, such as, highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including, electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail aspects of the graphene-based inorganic nanocomposites.