Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Journal of Environmental Monitoring, 3(11), p. 654

DOI: 10.1039/b811387d

Links

Tools

Export citation

Search in Google Scholar

A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight

Journal article published in 2009 by Jan Weber, Crispin J. Halsall, Jason J. Wargent, Nigel D. Paul ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aqueous solutions of fenitrothion and methyl parathion were photochemically degraded in an Atlas Suntest solar simulator (500 W m(-2)) as well as under ambient sunlight at Lancaster University (June & August 2007, 54 degrees N) and the degradation kinetics and disappearance quantum yields are reported. Fenitrothion degradation confirmed to first order kinetics (r(2) = 0.90-0.99) with a half-life range of 4.9 h-5.3 h, shorter than previously reported studies. In contrast, methyl parathion did not show significant degradation over the duration of these experiments. Light irradiances were monitored with a spectroradiometer during the Suntest simulator and outdoor experiments. The filtered-xenon arc lamp of the Suntest yielded spectral irradiances comparable to natural sunlight in the UVB and UVA wavelength range (280-400 nm), but with higher irradiances in the visible region (400-750 nm). Nonetheless, as both compounds have light absorption spectra at wavelengths < 400 nm, then the half-lives and disappearance quantum yields were similar between the Suntest and natural sunlight, and demonstrated that the Suntest is suitable for environmentally-relevant photochemical degradation experiments.