Published in

Royal Society of Chemistry, Soft Matter, 37(10), p. 7256-7261, 2014

DOI: 10.1039/c4sm01266f

Links

Tools

Export citation

Search in Google Scholar

Collapsing and reswelling kinetics of thermoresponsive polymers on surfaces: a matter of confinement and constraints

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on the collapsing and reswelling ability of grafted poly(methyl vinyl ether) chains of different molecular architectures. In order to study the influence of constraints and confinement of the chains, the polymer was grafted onto AFM tips, as a model of a curved nano-sized surface, and onto macroscopic silicon substrates for comparison purposes. AFM-based force spectroscopy experiments were performed to characterise at the nanoscale the temperature-dependent collapsing process and the reversibility to the swollen state on both substrates. The reversible character of the thermoresponsive transition and its kinetics were shown to greatly depend on the polymer architecture and the constraints encountered by the chains. ; Peer reviewed