Published in

Royal Society of Chemistry, Analyst, 17(138), p. 4898

DOI: 10.1039/c3an36800a

Links

Tools

Export citation

Search in Google Scholar

Pt-Pd bimetallic nanoparticles dispersed in an ionic liquid and peroxidase immobilized on nanoclay applied in the development of a biosensor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pt-Pd bimetallic alloy nanoparticles (NPs) dispersed in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (Pt-Pd-BMI·PF6) were employed together with a peroxidase (PO) enzyme from cauliflower immobilized on nanoclay for the development of a new biosensor for polyphenol determination by square-wave voltammetry (SWV). The biosensor demonstrated good repeatability and reproducibility, low limit of detection (LOD = 3.7 × 10(-7) mol L(-1) for caffeic acid (CA)), and adequate lifetime and stability (maintaining over 80% of the response over 80 days of evaluation, and allowing over 600 measurements by SWV for each electrode). Under optimized conditions, the proposed biosensor was applied in the determination of the bioelectrochemical polyphenolic index (BPI) for samples of commercial white wine, using CA as the phenolic compound standard. The recovery of CA from wine samples ranged from 95.5 to 108.3%. The values for the polyphenolic content obtained using the proposed biosensor showed a good correlation (r = 0.990) with those obtained with the reference spectrophotometric method (Folin-Ciocalteu method). Therefore, the proposed biosensor represents a useful tool for the rapid and accurate monitoring of polyphenolic content in wine samples and may also be applicable to other beverage samples, such as juices and teas.