Published in

Royal Society of Chemistry, MedChemComm, 3(4), p. 549-553, 2013

DOI: 10.1039/c3md20292e

Links

Tools

Export citation

Search in Google Scholar

Pseudopeptides with a centrally positioned alkene-based disulphide bridge mimetic stimulate kallikrein-related peptidase 3 activity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pseudopeptides based on the kallikrein-related peptidase 3 (KLK3) activating bicyclic peptide “C-4” comprising hydrocarbon-based disulphide bridge mimetics have been synthesized. After investigating different synthetic approaches, the pseudopeptides were successfully cyclized from two L-allylglycine side chains via an alkene ring-closing metathesis reaction during the peptide synthesis. The alkene-linker was formed in a 1:1 E/Z isomer ratio. The resulting pseudopeptides were almost as potent as the parent peptide, increasing the activity of KLK3 over four-fold at 200 μg ml−1 (130–140 μM) concentrations.