Published in

Cambridge University Press, Neuron Glia Biology, 02(3)

DOI: 10.1017/s1740925x07000695

Links

Tools

Export citation

Search in Google Scholar

Gliosis alters expression and uptake of spinal glial amino acid transporters in a mouse neuropathic pain model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractGliosis is strongly implicated in the development and maintenance of persistent pain states following chronic constriction injury of the sciatic nerve. Here we demonstrate that in the dorsal horn of the spinal cord, gliosis is accompanied by changes in glial amino acid transporters examined by immunoblot, immunohistochemistry and RT-PCR. Cytokines, proinflammatory mediators and microglia increase up to postoperative day (pd) 3 before decreasing on pd 7. Then, spinal glial fibrillary acidic protein increases on pd 7, lasting until pd 14 and later. Simultaneously, the expression of glial amino acid transporters for glycine and glutamate (GlyT1 and GLT1) is reduced on pd 7 and pd 14. Consistent with a reduced expression of GlyT1 and GLT1, high performance liquid chromatography reveals a net increase in the concentration of glutamate and glycine on pd 7 and pd 14 in tissue from the lumbar spinal cord of neuropathic mice. In this study we have confirmed that microglial activation precedes astrogliosis. Such a glial cytoskeletal rearrangement correlates with a marked decrease in glycine and glutamate transporters, which might, in turn, be responsible for the increased concentration of these neurotransmitters in the spinal cord. We speculate that these phenomena might contribute, via over-stimulation of NMDA receptors, to the changes in synaptic functioning that are responsible for the maintenance of persistent pain.