Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 3(2), p. 573-582, 2014

DOI: 10.1039/c3tc31327a

Links

Tools

Export citation

Search in Google Scholar

Melanin-like polymer layered on a nanotextured silicon surface for a hybrid biomimetic interface

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electrical transport across a biomimetic interface made up of spin coated melanin layers on nanotextured silicon surfaces with different texturing features and wetting properties is discussed. Nanotexturing allows, under certain conditions, the melanin better anchoring on a hydrophobic silicon surface, overcoming the hydrophilic melanin-hydrophobic silicon interface criticism. The feature of the electrical signal transduction across such a structure was studied by impedance spectroscopy and found to be influenced by the nano-texturing chemistry and surface morphology. The effects of a voltage pulse, as external stimulus modifying the electrical transport mechanisms and retention of the subsequently achieved carrier transport conditions have been elucidated. The results let to foresee a possible exploiting of this circuital element for bio and environmental molecules sensing.