Published in

Royal Society of Chemistry, Nanoscale, 7(4), p. 2447

DOI: 10.1039/c2nr30138e

Links

Tools

Export citation

Search in Google Scholar

Polymer-based tubular microbots: Role of composition and preparation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal surfaces (Ag, Pt, Au, Ni-Pt alloy), upon the movement of such bilayer microtubes are evaluated and compared. Electropolymerization conditions, such as the monomer concentration and medium (e.g. surfactant, electrolyte), have a profound effect upon the morphology and locomotion of the resulting microtubes. The most efficient propulsion is observed using PEDOT/Pt microbots that offer a record-breaking speed of over 1400 body lengths s(-1) at physiological temperature, which is the fastest relative speed reported to date for all artificial micro/nanomotors. An inner Pt-Ni alloy surface is shown useful for combining magnetic control and catalytic fuel decomposition within one layer, thus greatly simplifying the preparation of magnetically-guided microbots. Polymer-based microbots with an inner gold layer offer efficient biocatalytic propulsion in low peroxide level in connection to an immobilized catalase enzyme. Metallic Au/Pt bilayer microbots can also be prepared electrochemically to offer high speed propulsion towards potential biomedical applications through functionalization of the outer gold surface. Such rational template preparation and systematic optimization of highly efficient microbots hold considerable promise for diverse practical applications.