Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 6(1), p. 1197-1202

DOI: 10.1039/c2tc00275b

Links

Tools

Export citation

Search in Google Scholar

Electronic and magnetic structure of C60/Fe3O4(001): a hybrid interface for organic spintronics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on the electronic and magnetic characterization of the hybrid interface constituted of C60 molecules and an epitaxial Fe3O4(001) surface grown on GaAs(001). Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD), we demonstrate that a stable C60 sub-monolayer (ML) can be retained on the Fe3O4(001) surface upon in situ annealing at 250 °C. A carbon K-edge dichroic signal of 1% with respect to the XAS C 1s → π* peak intensity has been observed, indicative of a weaker electronic interaction of C60 with Fe3O4(001) compared to the previously reported case of C60/Fe(001). Remarkably, the Fe L-edge XMCD spectrum of Fe3O4(001) reveals a reduced Fe3+/Fe2+ ratio upon C60 sub-ML adsorption. This observation has been ascribed to electron donation by the C60 molecules, as a consequence of the high work function of Fe3O4(001). Our present work underlines the significance of chemical interactions between inorganic magnetic surfaces and molecular adsorbates for tuning of the electronic and magnetic properties of the interfaces, which have a profound impact on spin-polarized charge transport in hybrid organic–inorganic spintronic devices.