Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Journal of Materials Chemistry, 38(21), p. 14725, 2011

DOI: 10.1039/c1jm12028j

Links

Tools

Export citation

Search in Google Scholar

Graphene oxide for electrochemical sensing applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

By exploiting the presence of abundant carboxylic groups (-COOH) on graphene oxide (GO) and using EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride-N-hydroxysuccinimide) chemistry to covalently conjugate protein molecules, we demonstrate a novel electrochemical immunosensor for detection of antibody-antigen (Rabbit IgG-AntiRabbit IgG) interactions. The interactions were verified using Electrochemical Impedance Spectroscopy (EIS). Although GO is known to be a poor conductor, the charge transfer resistance (R(P)) of a GO modified glassy carbon electrode (GCE) was found to be as low as 1.26 Omega cm(2). This value is similar to that obtained for reduced graphene oxide (RGO) or graphene and an order of magnitude less than bare GCE. The EIS monitored antibody-antigen interactions showed a linear increase in R(P) and the overall impedance of the system with increase of antibody concentration. Rabbit IgG antibodies were detected over a wide range of concentrations from 3.3 nM to 683 nM with the limit of detection (LOD) estimated to be 0.67 nM. The sensor showed high selectivity towards Rabbit IgG antibody as compared to non-complementary myoglobin. RGO modified GCE showed no sensing properties due to the removal of carboxylic groups which prevented subsequent chemical functionalization and immobilization of antigen molecules. The sensitivity and selectivity achievable by this simple label free technique hint at the possibility of GO becoming the electrode material of choice for future electrochemical sensing protocols.