Published in

Cambridge University Press, Journal of Fluid Mechanics, (393), p. 149-174

DOI: 10.1017/s0022112099005583

Links

Tools

Export citation

Search in Google Scholar

Grain sorting and bar instability

Journal article published in 1999 by Stefano Lanzoni ORCID, Marco Tubino
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A two-dimensional model of flow and bed topography is proposed to investigate the effect of sediment heterogeneity on the development of alternate bars. Within the context of a linear stability theory the flow field, the bed topography and the grain size distribution function are perturbed leading to an integro-differential linear eigenvalue problem. It is shown that the selective transport of different grain size fractions and the resulting spatial pattern of sorting may appreciably affect the balance between stabilizing and destabilizing actions which govern bar instability. Theoretical results suggest that sediment heterogeneity leads to a damping of both growth rate and migration speed of bars, while bar wavelength is shortened with respect to the case of uniform sediment. The above findings conform, at least qualitatively, to the experimentally detected reduction of bar height, length and celerity. The observed tendency of coarser particles to pile up towards bar crests is also reproduced by theoretical results.