Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 24(8), p. 2893

DOI: 10.1039/b603979k

Links

Tools

Export citation

Search in Google Scholar

Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Highly dispersed H(3)PW(12)O(40)/SiO(2) catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO(2) surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH(3) adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial DeltaH(ads) = approximately -164 kJ mol(-1). Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H(3)PW(12)O(40) pseudo-liquid phase available within supported multilayers.