Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 6(13), p. 2350-2355, 2011

DOI: 10.1039/c0cp01794a

Links

Tools

Export citation

Search in Google Scholar

Product pair correlation in CH3OH photodissociation at 157 nm: the OH + CH3channel

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The OH + CH(3) product channel for the photodissociation of CH(3)OH at 157 nm was investigated using the velocity map imaging technique with the detection of CH(3) radical products via (2+1) resonance-enhanced multiphoton ionization (REMPI). Images were measured for the CH(3) formed in the ground and excited states (v(2) = 0, 1, 2, and 3) of the umbrella vibrational mode and correlated OH vibrational state distributions were also determined. We find that the vibrational distribution of the OH fragment in the OH + CH(3) channel is clearly inverted. Anisotropic distributions for the CH(3) (v(2) = 0, 1, 2, and 3) products were also determined, which is indicative of a fast dissociation process for the C-O bond cleavage. A slower CH(3) product channel was also observed, that is assigned to a two-step photodissociation process, in which the first step is the production of a CH(3)O(X (2)E) radical via the cleavage of the O-H bond in CH(3)OH, followed by probe laser photodissociation of the nascent CH(3)O radicals yielding CH(3)(X (2)A(1), v = 0) products.