Published in

Cambridge University Press, Journal of Fluid Mechanics, (606)

DOI: 10.1017/s0022112008001699

Links

Tools

Export citation

Search in Google Scholar

The naturally oscillating flow emerging from a fluidic precessing jet nozzle

Journal article published in 2008 by Chong Y. Wong, Graham J. Nathan ORCID, Richard M. Kelso
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phase-averaged and directionally triggered digital particle image velocimetry measurements were taken in longitudinal and transverse planes in the near field of the flow emerging from a fluidic precessing jet nozzle. Measurements were performed at nozzle inlet Reynolds and Strouhal numbers of 59000 and 0.0017, respectively. Results indicate that the jet emerging from the nozzle departs with an azimuthal component in a direction opposite to that of the jet precession. In addition, the structure of the ‘flow convergence’ region, reported in an earlier study, is better resolved here. At least three unique vortex-pair regions containing smaller vortical ‘blobs’ are identified for the first time. These include a vortex-pair region originating from the foci on the downstream face of the nozzle centrebody, a vortex-pair region shed from the edge of the centrebody and a vortex-pair region originating from the downstream surface of the nozzle exit lip. ; Chong Y. Wong, Graham J. Nathan and Richard M. Kelso