Published in

Royal Society of Chemistry, Dalton Transactions, 6(42), p. 2266-2281

DOI: 10.1039/c2dt32378h

Links

Tools

Export citation

Search in Google Scholar

Electrochemical and spectroelectrochemical studies of C-benzodiazaborolyl-ortho-carboranes.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fifteen C-diazaborolyl-ortho-carboranes, 1-R′-2-R′′-1,2-C2B10H10, where R′ represents the groups 2-(1,3-Et2-1,3,2-N2BC6H4)-, 2-(1,3-Ph2-1,3,2-N2BC6H4)-, 2-(1,3-Ph2-5,6-Me2-1,3,2-N2BC6H2)-, 2-(1,3-iPr2-1,3,2-N2BC6H4)-, and 2-(1,3,2-N2BC6H6)- and where R′′ is H, Me, Ph, tBu or SiMe3, were synthesized. Cyclic voltammetry studies of the compounds showed irreversible oxidation waves which are caused by the oxidation of the heterocycle. Those C-diazaborolyl-ortho-carboranes with Ph, tBu and SiMe3 substituents at the adjacent C-atom of the cage displayed two one-electron reduction waves reflecting the formation of stable radical monoanions with unusual (2n + 3) skeletal electron counts. The geometries of these anions were determined by combinations of infrared, UV-visible spectroelectrochemical and computational studies. Additionally the structures of seven new C-diazaborolyl-ortho-carboranes and one new 2-bromo-1,3,2-benzodiazaborole were determined by X-ray crystallography and compared with previously obtained structures.