Published in

Royal Society of Chemistry, Soft Matter, 3(11), p. 622-626

DOI: 10.1039/c4sm02147a

Links

Tools

Export citation

Search in Google Scholar

Connecting short and long time dynamics in hard-sphere-like colloidal glasses

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Glass-forming materials are characterized by an intermittent motion at the microscopic scale. Particles spend most of their time rattling within the cages formed by their neighbors, and seldom jump to a different cage. In molecular glass formers the temperature dependence of the jump features, such as the average caging time and jump length, characterizes the relaxation processes and allows for a short-time prediction of the diffusivity. Here we experimentally investigate the cage-jump motion of a two-dimensional hard-sphere-like colloidal suspension, where the volume fraction is the relevant parameter controlling the slowing down of the dynamics. We characterize the volume fraction dependence of the cage-jump features and show that, as in molecular systems, they allow for a short time prediction of the diffusivity. ; Comment: 5 pages, 6 figures, Soft Matter 2015