Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 22(15), p. 8678, 2013

DOI: 10.1039/c3cp44334e

Links

Tools

Export citation

Search in Google Scholar

A XAS study of the luminescent Eu centers in thiosilicate phosphors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Due to its bright yellow-to-red emission, europium doped Ca2SiS4 is a very interesting material for phosphor converted light emitting diodes. The emission spectrum is highly dependent on the Eu concentration and can consist of more than one emission band. We combined X-ray absorption fine structure and photoluminescence measurements to analyze the structure of europium centers in (Ca,Eu)(2)SiS4 luminescent powders. This paper provides an explanation for the concentration dependency of the emission spectra. We find that at low dopant concentrations a large fraction of trivalent europium ions is unexpectedly present in the powders. These trivalent europium ions tend to form defect clusters in the luminescent powders. Furthermore we observe a preferential substitution of the europium ions over the two different substitutional Ca sites, which changes upon increasing the dopant concentration. At high dopant concentration, the powder crystallizes in the monoclinic Eu2SiS4 structure. Once more a preferential substitution of the europium ions is observed. Summarizing, the influence of the concentration on the emission spectrum is explained by a difference in preferential occupation of the Eu ions in the lattice.