Published in

Cold Spring Harbor Laboratory Press, Genome Research, 12(33), p. 2029-2040, 2023

DOI: 10.1101/gr.278070.123

Links

Tools

Export citation

Search in Google Scholar

Whole-genome long-read sequencing downsampling and its effect on variant-calling precision and recall

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Advances in long-read sequencing (LRS) technologies continue to make whole-genome sequencing more complete, affordable, and accurate. LRS provides significant advantages over short-read sequencing approaches, including phased de novo genome assembly, access to previously excluded genomic regions, and discovery of more complex structural variants (SVs) associated with disease. Limitations remain with respect to cost, scalability, and platform-dependent read accuracy and the tradeoffs between sequence coverage and sensitivity of variant discovery are important experimental considerations for the application of LRS. We compare the genetic variant-calling precision and recall of Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) HiFi platforms over a range of sequence coverages. For read-based applications, LRS sensitivity begins to plateau around 12-fold coverage with a majority of variants called with reasonable accuracy (F1score above 0.5), and both platforms perform well for SV detection. Genome assembly increases variant-calling precision and recall of SVs and indels in HiFi data sets with HiFi outperforming ONT in quality as measured by the F1score of assembly-based variant call sets. While both technologies continue to evolve, our work offers guidance to design cost-effective experimental strategies that do not compromise on discovering novel biology.