Published in

Royal Society of Chemistry, Soft Matter, 20(10), p. 3649-3655

DOI: 10.1039/c3sm52717d

Links

Tools

Export citation

Search in Google Scholar

Compact structure and non-Gaussian Dynamics of ring polymer melts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest. With increasing time the center of mass (c.o.m.) diffusion undergoes a transition from sub-diffusive to diffusive behavior. The transition time agrees well with the decorrelation time predicted by a mode coupling approach. As a novel feature well pronounced non-Gaussian behavior of the c.o.m. diffusion was found that shows surprising analogies to the cage effect known from glassy systems. Finally, the longest wavelength Rouse modes are suppressed possibly as a consequence of an onset of lattice animal features as hypothesized in theoretical approaches.