Published in

Royal Society of Chemistry, Soft Matter, 38(8), p. 9816, 2012

DOI: 10.1039/c2sm26355f

Links

Tools

Export citation

Search in Google Scholar

Architecture-driven aqueous stability of hydrophobic, branched polymer nanoparticles prepared by rapid nanoprecipitation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The first nanoprecipitation study of hydrophobic branched vinyl polymers is presented with control across a wide range of particle diameters (approximately 60–800 nm) from control of degree of polymerisation and precipitation parameters. In contrast to linear polymers of identical primary chain length, the formation of stable nanoparticles in aqueous media appears to be architecture driven with a contribution from oligomeric chain-ends with measureable water-solubility. The aqueous nanoparticles dispersions are robust and stable to dilution, solvent addition, sonication and temperature. The addition of small amounts of NaCl led to a destabilisation indicating charge stabilisation is also a major contributor to stability