Published in

Elsevier, Physica B: Condensed Matter, 23-24(404), p. 5170-5172

DOI: 10.1016/j.physb.2009.08.275

Links

Tools

Export citation

Search in Google Scholar

Relation between photocurrent and DLTS signals observed for quantum dot systems

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electro-optical properties of InAs/GaAs quantum dots (QD) are presented. It is shown that they can contribute to the photocurrent at temperatures where photo-generated excitons can split. This happens if the carrier binding energies are not too large to prevent the carrier emission process. At lower temperatures, the exciton recombination process can effectively compete with the carrier emission processes and no photocurrent signal is observed. The Laplace DLTS technique has been used in a wide temperature range to analyze the electron and hole emission separately and combine them with the observed temperature dependence of the photocurrent. The photocurrent measurements also showed that with an increase in temperature the dot-related photocurrent peaks shift to lower energies with a rate similar to GaAs band gap shrinkage.