Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Animals, 19(12), p. 2663, 2022

DOI: 10.3390/ani12192663

Links

Tools

Export citation

Search in Google Scholar

Prediction of Indirect Indicators of a Grass-Based Diet by Milk Fourier Transform Mid-Infrared Spectroscopy to Assess the Feeding Typologies of Dairy Farms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This research aims to develop a predictive model to discriminate milk produced from a cattle diet either based on grass or not using milk mid-infrared spectrometry and the month of testing (an indirect indicator of the feeding ration). The dataset contained 3,377,715 spectra collected between 2011 and 2021 from 2449 farms and 3 grazing traits defined following the month of testing. Records from 30% of the randomly selected farms were kept in the calibration set, and the remaining records were used to validate the models. Around 90% of the records were correctly discriminated. This accuracy is very good, as some records could be erroneously assigned. The probability of belonging to the GRASS modality allowed confirmation of the model’s ability to detect the transition period even if the model was not trained on this data. Indeed, the probability increased from the spring to the summer and then decreased. The discrimination was mainly explained by the changes in the milk fat, mineral, and protein compositions. A hierarchical clustering from the averaged probability per farm and year highlighted 12 groups illustrating different management practices. The probability of belonging to the GRASS class could be used in a tool counting the number of grazing days.