Published in

Microbiology Society, Microbial Genomics, 9(7), 2021

DOI: 10.1099/mgen.0.000652

Links

Tools

Export citation

Search in Google Scholar

Lipopolysaccharide core type diversity in the Escherichia coli species in association with phylogeny, virulence gene repertoire and distribution of type VI secretion systems

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli , is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.