Published in

Karger Publishers, Inflammatory Intestinal Diseases, 3(6), p. 140-153, 2021

DOI: 10.1159/000517474

Links

Tools

Export citation

Search in Google Scholar

A Novel OGR1 (GPR68) Inhibitor Attenuates Inflammation in Murine Models of Colitis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

<b><i>Background and Aims:</i></b> Local extracellular acidification is associated with several conditions, such as ischemia, cancer, metabolic disease, respiratory diseases, and inflammatory bowel disease (IBD). Several recent studies reported a link between IBD and a family of pH-sensing G protein-coupled receptors. Our previous studies point to an essential role for OGR1 (GPR68) in the modulation of intestinal inflammation and fibrosis. In the current study, we evaluated the effects of a novel OGR1 inhibitor in murine models of colitis. <b><i>Methods:</i></b> The effects of a novel small-molecule OGR1 inhibitor were assessed in the acute and chronic dextran sulfate sodium (DSS) murine models of colitis. Macroscopic disease indicators of intestinal inflammation were evaluated, and epithelial damage and immune cell infiltration and proliferation were assessed by immunohistochemistry. <b><i>Results:</i></b> The OGR1 inhibitor ameliorated clinical parameters in acute and chronic DSS-induced colitis. In mice treated with the OGR1 inhibitor, endoscopy showed no thickening and normal vascularity, while fibrin was not detected. Histopathological findings revealed a decrease in severity of colonic inflammation in the OGR1 inhibitor group when compared to vehicle-DSS controls. In OGR1 inhibitor-treated mice, staining for the macrophage marker F4/80 and cellular proliferation marker Ki-67 revealed a reduction of infiltrating macrophages and slightly enhanced cell proliferation, respectively. This was accompanied by a reduction in pro-inflammatory cytokines, TNF and IL-6, and the fibrosis marker TGF-β1. <b><i>Conclusion:</i></b> This is the first report providing evidence that a pharmacological inhibition of OGR1 has a therapeutic effect in murine colitis models. Our data suggest that targeting proton-sensing OGR1 using specific small-molecule inhibitors may be a novel therapeutic approach for the treatment of IBD.