Published in

MDPI, Nutrients, 6(14), p. 1161, 2022

DOI: 10.3390/nu14061161

Links

Tools

Export citation

Search in Google Scholar

Linseed, Baru, and Coconut Oils: NMR-Based Metabolomics, Leukocyte Infiltration Potential In Vivo, and Their Oil Characterization. Are There Still Controversies?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Different fatty acid proportions produce potential inflammatory and metabolic changes in organisms. However, the evidence for how each fatty acid mediates the metabolic pathway, and its lipid stability remains controversial. To resolve this controversy, the present study investigated the metabolic effects of cold-pressed linseed (LG), coconut (CG), and baru (BG) oils in comparison to those of soybean oil (SG) in mice, in terms of their oil characterization and stability. The quality analysis showed less oxidative behavior among PUFA-rich oils (SO, BO, and LO, with induction periods lower than 2 h compared to 39.8 h for CG), besides the high contents of tocopherols and carotenoids in SG and LG. In the experimental study, CG presented higher triglyceride (257.93 ± 72.30) and VLDL-cholesterol levels (51.59 ± 14.46, p < 0.05), while LG reduced LDL levels (59.29 ± 7.56, p < 0.05) when compared to SG (183.14 ± 22.06, 36.63 ± 4.41 and 131.63 ± 29.0, respectively). For visceral fats, the adiposity index was lower for BG (7.32 ± 3.13) and CG (9.58 ± 1.02, p < 0.05) in relation to SG (12.53 ± 2.80), and for leukocyte recruitment, CG presented lower polymorphonuclear (PMN) (p < 0.0001) and mononuclear (MN) (p < 0.05) cell infiltration, demonstrating anti-inflammatory potential. In NMR-based metabolomics, although CG presented higher values for the glucose, lactate, and LDL/VLDL ratio, this group also evidenced high levels of choline, a lipotropic metabolite. Our study emphasized the controversies of saturated fatty acids, which impair serum lipids, while alfa-linolenic acid presented cardioprotective effects. However, coconut oil also has a positive immunomodulatory pathway and was found to reduce visceral bodyfat in mice. Therefore, for future applications, we suggest a combination of lauric and al-fa-linolenic acid sources, which are present in coconut and linseed oil, respectively. This combination could be less obesogenic and inflammatory and exert cardioprotective action.