Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6541(372), 2021

DOI: 10.1126/science.abe5601

Links

Tools

Export citation

Search in Google Scholar

Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Small RNAs guard CRISPR-Cas The microbial adaptive immunity system CRISPR-Cas benefits microbes by warding off genetic invaders, but it also inflicts a fitness cost because of occasional autoimmune reactions, rendering CRISPR loci evolutionarily unstable. Li et al. identified previously unnoticed toxin-antitoxin RNA pairs embedded within diverse CRISPR-Cas loci. The antitoxin RNA mimics a CRISPR RNA and repurposes the CRISPR immunity effector to transcriptionally repress a toxin RNA that would otherwise arrest cell growth by sequestering a rare transfer RNA. These small RNAs thus form a symbiosis with CRISPR, rendering CRISPR addictive to the host despite its fitness cost. These findings reveal how CRISPR-Cas can operate as a selfish genetic element. Science , this issue p. eabe5601