Full text: Download
The main objective was to measure the optical coefficients of peaches after bruising at different maturity levels and detect bruises. A spatially resolved method was used to acquire absorption coefficient (μa) and the reduced scattering coefficient (µs’) spectra from 550 to 1000 nm, and a total of 12 groups (3 maturity levels * 4 detection times) were used to assess changes in µa and µs’ resulting from bruising. Maturation and bruising both caused a decrease in µs’ and an increase in µa, and the optical properties of immature peaches changed more after bruising than the optical properties of ripe peaches. Four hours after bruising, the optical properties of most samples were significantly different from those of intact peaches (p < 0.05), and the optical properties showed damage to tissue earlier than the appearance symptoms observed with the naked eye. The classification results of the Support Vector Machine model for bruised peaches showed that μa had the best classification accuracy compared to μs′ and their combinations (µa × µs’, µeff). Overall, based on μa, the average detection accuracies for peaches after bruising of 0 h, 4 h, and 24 h were increased.