Published in

Springer (part of Springer Nature), Annals of Microbiology, 1(70), 2020

DOI: 10.1186/s13213-020-01612-6

Links

Tools

Export citation

Search in Google Scholar

Combined effect of water activity and pH on the growth of food-related ascospore-forming molds

Journal article published in 2020 by Irene Racchi, Nicoletta Scaramuzza, Alyssa Hidalgo ORCID, Elettra Berni
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose The contamination of raw materials, packaging, or processing environments by fungal ascospores is a real concern for food industries, where variable rates of spoilage can be reached in pasteurized acidic products such as fruit juices, fruit jams, or soft drinks. The aim of this work was to assess the combined effect of aw and pH on the growth of six isolates from three genera of ascospore-forming molds that may occur in raw materials and in food industrial environments, in order to determine the environmental conditions that prevent the spoilage of pasteurized foods and beverages. Methods Growth tests were carried out on 60-day-old ascospores from Aspergillus hiratsukae (≡Neosartorya hiratsukae), Aspergillus thermomutatus (≡Neosartorya pseudofischeri), Chaetomium flavoviride, Chaetomium globosum, Talaromyces bacillisporus, and Talaromyces trachyspermus. The tests were performed up to 90 days at 25 °C, using sucrose solutions at different aw (0.85, 0.88, 0.92, 0.95) and pH (3.20, 3.50, 3.80, 4.20, 4.60) values. Growth was characterized by fitting an ordinary logistic regression model to the collected growth data. Results The explained percentage of the growth/no growth models ranged between 81.0 and 99.3%: aw exerted the largest influence on the growth of all tested species, while pH was significant only for Chaetomium isolates. The minimum conditions for germination and growth were aw 0.92 and pH 3.50 or 3.80, respectively, for C. flavoviride (46 days) and C. globosum (39 days), aw 0.92 and pH 3.20 for T. trachyspermus (13 days), aw 0.88 and pH 3.20 for T. bacillisporus (39 days), and aw 0.88 and pH 3.20 for the two aspergilli (33 and 27 days, respectively, for A. hiratsukae and A. thermomutatus). Conclusions Most of the spoiling mycetes tested were well-adapted to the formulations considered; therefore, foods strategies aiming to inhibit their growth should explore also the hurdle effect exerted by other factors (e.g., antioxidants, organic acids, oxygen levels).