Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Polymer Chemistry, 12(4), p. 3458, 2013

DOI: 10.1039/c3py00273j

Links

Tools

Export citation

Search in Google Scholar

Synthesis, self-assembly and (absence of) protein interactions of poly(glycerol methacrylate)-silicone macro-amphiphiles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present study focuses on the synthesis of amphiphilic block copolymers containing poly(glycerol monomethacrylate) (PGMMA), showing the advantages of a protection/deprotection strategy based on silyl groups. PGMMA blocks were synthesized via ATRP started by a double functional poly(dimethyl siloxane) (PDMS) macroinitiator of molecular weight ≈7000 g mol-1. The resulting triblock copolymers were characterized by low polydispersity (generally ≤1.1) and their aggregation concentration in water was essentially dominated by the PDMS block length (critical aggregation concentration substantially invariant for GMMA degree of polymerization ≥30). For GMMA blocks with DP > 50, the self-assembly in water produced 35-50 nm spherical micelles, while shorter hydrophilic chains produced larger aggregates apparently displaying worm-like morphologies. Block copolymers with long GMMA chains (DP ≈ 200) produced particularly stable micellar aggregates, which were then selected for a preliminary assessment of the possibility of adsorption of plasma proteins (albumin and fibrinogen); using diffusion NMR as an analytical technique, no significant adsorption was recorded both on micelles and on soluble PGMMA employed as a control, indicating the possibility of a "stealth" behaviour. This journal is © 2013 The Royal Society of Chemistry.